

YENEPOYA (DEEMED TO BE UNIVERSITY) Recognized under Sec 3(A) of the UGC Act 1956

Chemistry

Core course for Pre-PhD: 4 credits

Yenepoya Research Centre Yenepoya (Deemed to be University) University Road, Deralakatte Mangalore – 575018

Course Name: Chemistry

1.	Course Type	: Core
2.	Level	: Pre-Ph.D. course work
3.	Credit Value	: 4 Credits
4.	Total Hours	: 60 (L:P:S: 10:25:25)
5.	Total Marks	: 100 (IA= 40 + Final exam= 70)

6. Course Objectives

- To train to understand the fundamentals of Chemistry and Nanomaterial for lab skills needed for PhD research.
- To expose the candidates to modern techniques undertaking experiments and data analysis tools for interpreting the results.

7. Learning Outcome

• This course will enable the students to design detailed work plan to execute the entrusted research topic related to chemistry/nanomaterials/polymer science.

8. Competencies

On completion of the course, the scholars will be able to perform activities as follows;

- 1. Comprehend the different types of analytical, chromatographic and separation techniques used for material research
- 2. Apply different spectroscopic methods for surface characterization/chemical characterization of nanomaterials.
- 3. Describe protocols used for polymer synthesis, structure, properties and their associated applications including bio-degradable polymeric materials
- 4. Demonstrate different synthesis methods, basic properties, morphological and structural characterization studies of nonmaterial and nanocomposites of biological interest
- 5. Plan protocols and experiments for the synthesis of new complex organic molecules based on retro synthetic analysis method
- 6. Analyze the experimentally generated data using the basic statistical methods and validate analytical solution
- 7. Practice of care and safety protocols in handling chemicals, biohazardous materials or equipments and disposal of chemicals biological/hazardous wastes as per prescribed guidelines.

9. Content of the course

Module 1: Bio-Analytical methods and instrumentation

- 1.1. Microscopy: image formation, resolution, techniques, limitations, and types and applications
- 1.2. Spectroscopy-different types of spectroscopy (UV-Vis, IR, AA,ESR,NMR, florescence) and their applications
- 1.3. Separation and purification methods, centrifugation sedimentation principle, differential centrifugation, type of centrifuges; Chromatography (Thin layer, adsorption, partition, affinity, ion exchange, and size exclusion) and applications; Electro-analytical techniques,
- 1.4. Molecular biology techniques-PCR, blotting techniques, ELISA, immunoprecipitation and immune-histochemistry.

Module 2: Validation of Bio-Analytical methods

- 2.1. Introduction; Precision and accuracy; Mean and variance; Relative standard deviation
- 2.2. Limit of detection and quantification; Matrix effect; Recovery; Parallelism; Interferences; Qualitative (Screening) assays; Figures of merit for qualitative (Screening).

Module 3: Nano-materials and characterization methods

- 3.1. Nanomaterials, Nanocomposites, consumer goods, smart materials, application to various field, optics, telecommunication, electronics, digital technology and environment, biomedical application, protein engineering, drug delivery, biomimetics, quantum dots
- 3.2. Understanding and data analysis of Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Transmission Electron Spectroscopy (TEM), Dynamic Light Scattering(DLS), Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS) and Peak Fitting (XPSPEAK41 software).

Module 4: Advanced organic synthesis:

4.1. Design of organic synthesis; Planning of synthesis; Convergent and reiterative processes

- 4.2. Retrosyntheticanalysis;Transformsandretrons;Selectingtransforms;transformbaseddis connections;Stereochemicalstrategies;Topological strategies
- 4.3. Carbon-carbon bond forming reactions nucleophilic/electrophilic displacements, addition reactions; Coupling reactions (Suzuki, Negishi, Kumada, Hiyama, Heck, Sonogoshira, Buchwald-Hartwig couplings) with applications
- 4.4. Selectivity in organic synthesis: asymmetric alkylation, oxidation and cycloadditions; Advances in C-Heteroatom bond formation; General approach to heterocyclic synthesis - cyclisation and cycloaddition routes.

Module 5: Macromolecular science

- 5.1. History of macromolecular science; Introduction and classification of polymers; monomer, oligomer, and polymer
- 5.2. Structureandclassificationofpolymers;Propertiesofpolymers(physical, thermal and mechanical properties)
- 5.3. Molecular weight-concept of average molecular weight of polymers; Molecular weight distribution and determination, polydispersity index
- 5.4. Polymerization reactions Types of polymerization reactions and examples
- 5.5. Conducting polymers, examples, doping, applications; Biodegradable polymers Synthesis strategies, characterization, and applications intra cellular delivery, bioimaging and sensing.

Teaching-learning methods

Madulas	Teaching-learning			
Wiodules	Lecture	Practical/Hands on	Self study	
Madala 1.	1.1	1.1		
Bio Analytical methods and		1.2	1.2 (Seminar)	
instrumentation	1.3			
Instrumentation	1.4	1.4		
Module 2:	2.1	2.1	2.1	
Validation of Bio-	2.2	2.2		
Analytical methods				
Module 3: Nanomaterials	3.1		3.1	
and characterization	3.2	3.2	3.2 (Seminar)	
methods				
	4.1		4.1 (Seminar)	
Module 4: Advanced			4.2 (Seminar)	
organic synthesis	4.3	4.3		
	4.4		4.4	
	5.1			
Madula 5. Magnetical avian	5.2		5.2	
science	5.3			
Science	5.4		5.4	
	5.5			

10. Assessment

Formative assessments: (40 Marks)

1	Internal Exams - 40 marks each (2)	20 M
2	Seminar (2)	8 M
3	Journal Club (2)	8 M
4	Assignments (5)	4 M

Summative assessments: (60 Marks)

Sl. No.	Details	QXM	
1	Questions related to knowledge on the use of different types of analytical/chromatographic/separation techniques for research		
	in chemistry.	2X10M= 20 M	
	nanoparticle, separation of carbon dots and electrochemical		
	characterization of nanomaterials etc.)		
2	Questions related to problem solving.		
	(e.g. Interpretation of data for bioconjugation of nanomaterials)		
3	Questions related to designing methodology for the synthesis		
	and characterization	1X20M=20 M	
	(e.g. how to ascertain the size and shape of clustered		

	nanomaterials and single nanoparticles)	
4	Descriptive questions from module 2, 4 and 5 to assess the knowledge.	4X5M=20M

Learning Resources

Student should refer leading journals and publishers in the subject category and list is not limited to specific titles.

Text Books

- 1. C. N. R. Rao, A. Muller & A. K. Cheetham (2004). The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Volume 1. Wiley-VCH, Verlag GmbH, Germany.
- 2. I Joseph Wang (2004). Analytical Electrochemistry, 2nd Edition. Wiley-VCH, Verlag GmbH, Germany.
- 3. J. Clayden, N. Greeves, S. Warren & P. Wothers (2001). Organic Chemistry. Oxford University Press INC, New York,
- 4. M A. Ratner and D. Ratner, Nanotechnology (2003): A Gentle Introduction to the Next Big Idea. Pearson education Inc., Prentice Hall / PTR, New Jersey, USA.
- 5. P. L Nayak and S. Lenka (2012). Text book of Polymer science. Kalyani Publishers, New Delhi.
- 6. Susan R Mikkelsen and Edurdo Corton (2004). Bioanalytical Chemistry. Wiley-VCH, Verlag GmbH, Germany.

Reference Books

- 1. C Boyer (2009). Bio-applications of RAFT Polymerization. Chem. Rev, 109 (11), pp 5402-5436.
- 2. E.J. Corey & X.-M. Cheng (1989). The Logic of Chemical Synthesis. John Wiley and Sons.
- Fred W. Billmeyer, Jr (1984). Textbook of Polymer Science, 3rd Edition. Wiley-Interscience, New York.
- 4. G. S. Misra. (2007). Introductory Polymer Chemistry. New Age International.
- 5. K Matyjaszewski & TP. Davis. Handbook of Radical Polymerization. DOI: 10.1002/0471220450.
- 6. R.O.C. Norman & J. M. Coxon (1993). Principles of Organic Synthesis. 3rd Edition, London; New York : Blackie Academic & Professional.
- 7. R.S. Ward (1999). Selectivity in Organic Synthesis. John Wiley & Sons.
- **Online Resources:** Journal articles, reviews, perspective, case studies, regulatory issues, national guidelines on ethics, research integrity and reporting of the data.

* * * * * * * * *